Enhancing the Control and Performance of Particle Systems through the Use of Local Environments

نویسندگان

  • Daniel O. Kutz
  • Richard R. Eckert
  • William T. Reeves
چکیده

The creation, behavior, and performance of particle systems in computer graphics has been a balance between control, visual accuracy, and CPU utilization since their inception. A tradeoff must be made between a physically-accurate visual representation and computation time. The most mathematically-correct way to represent particle systems is through the application of Newton’s laws of motion. This solution, in which the particles are aware of each other, can be computationally expensive, usually to the order of θ(N), where N is the number of particles in the system. A new and better way of representing, controlling, and modifying the behavior of particle systems is proposed and demonstrated. Here, in addition to the global environment that determines the behavior of particles everywhere in space, the particles move through a set of localized environments, in which each environment acts only on those particles that are within the confines of a particular environment. With this system, the parameters of each localized environment are adjusted and provide fine control over the behavior of the particles, thereby producing visual results comparable to those that would be obtained from a physically-correct solution in which the particles interact with each other. The proposed method results in a significantly improved performance of θ(N·L), where L is the number of localized environments. By changing the parameters of the local environments, a high degree of flexibility in the types of phenomena being modeled can be obtained, thereby allowing the same program to simulate a wide variety of physical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Load Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm

The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...

متن کامل

Design of a New IPFC-Based Damping Neurocontrol for Enhancing Stability of a Power System Using Particle Swarm Optimization

The interline power flow controller (IPFC) is a concept of the FACTS controller for series compensation which can inject a voltage with controllable magnitude and phase angle among multi lines. This paper proposes a novel IPFC-Based Damping Neuro-control scheme using PSO for damping oscil‌la‌t‌i‌o‌ns in a power system to improve power system stability. The add‌i‌tion of a supplementary controll...

متن کامل

Chaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks

Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001